

załącznik do Regulaminu programu "visiting profesor"

Osoba zgłaszająca z PW				
Tytuł i stopień naukowy	dr hab. inż.			
Imię i nazwisko	Marek Wojtyra			
Wydział	Mechaniczny Energetyki i Lotnictwa			
Mail w domenie PW	Marek.Wojtyra@pw.edu.pl			
Telefon kontaktowy	22 234 5610			

Propozycja osoby zgłaszanej jako visiting professor						
Tytuł i stopień naukowy	Associate Professor (Tenure Track), dr inż.					
Imię i nazwisko	Grzegorz Orzechowski					
Dokładna afiliacja	Laboratory of Sustainable Mechatronics					
	Department of Mechanical Engineering					
	School of Energy Systems					
	Lappeenranta-Lahti University of Technology LUT					
	Mukkulankatu 19, 15210 Lahti					
	Finland					
Mail kontaktowy	grzegorz.orzechowski@lut.fi					
Opis osiągnięć	Grzegorz Orzechowski is an accomplished Associate Professor					
(1/2-1 strony)	(Tenure Track) in Sustainable Mechatronics at the Department of					
	Mechanical Engineering, Lappeenranta-Lahti University of					
	Technology LUT, Lahti, Finland. With a strong academic					
	background, Grzegorz holds a Ph.D. in Automation and Robotics					
	from the Faculty of Power and Aeronautical Engineering,					
	Warsaw University of Technology, Poland, and a Title of Docent					
	in Artificial Intelligence based on Computational Dynamics from					
	the School of Energy Systems, Lappeenranta-Lahti University of					
	Technology LUT, Finland.					
	Throughout his career, Grzegorz has held various significant					
	positions, including Post-doctoral Researcher and Senior					
	Developer at Mevea Oy. Grzegorz has also served as an Assistant					
	Professor at the Warsaw University of Technology and has had					
	the opportunity to work as a Visiting Researcher at the					
	Lappeenranta University of Technology and as a Visiting Scholar					
	at the University of Illinois at Chicago.					
	Grzegorz's research interests lie in the fields of artificial					
	intelligence, computational dynamics, and sustainable					

mechatronics. His work has contributed to advancements in these areas, and he has been actively involved in various research projects and collaborations. Grzegorz's achievements and contributions to the field have been recognized through his academic appointments and research positions.

Code of the course	4606-VP-ES-000	24	Name o	of the cour	rse	Polish English		Polish Dynamika układów wieloczłono z zastosowaniem parametrów E i uczenia maszynowego			członowych trów Eulera
								Multibody Dynamics with Euler Parameters and Machine Learning			
Type of the course	Specialty subject/researcher's workshop										
Course coordinator	Grzegorz Orzech	owski	iki Course teacher Grzegorz Orzecho			z Orzechowski	chowski				
Implementing unit	Faculty of Power and Aeronautical Engineering		Scientific discipline / disciplines*		Mechanical Engineering (IMECH) Automation, Electronics, Electrical Engineering and Space Technologies (AEEiTK) Information and Communication Technology (ITiT)						
Level of education	Doctoral s	Doctoral studies Semeste		Semester		Spring					
Language of the course	English										
Type of assessment	Pass or I	Fail	Number of hours a semester		rs in	60		ECTS credits		5	
Minimum number of participants	10		Maximum number of participants		nber its	30		Available for studer (BSc, MSc)	nts	Yes/ No	
Type of classes		Lectu	cture Audit class		litory sses	Proje	ect classes	Laboratory		Seminar	
Number of hours	in a week										
	in a semester	24					8	28			

* does not apply to the Researcher's Workshop

1. Prerequisites

Basic knowledge of multibody dynamics, Familiarity with programming, Understanding of machine learning fundamentals

2. Course objectives

The course aims to provide students with a comprehensive understanding of spatial multibody dynamics using Euler Parameters and the application of machine learning techniques for control and prediction. By the end of the course, students will be able to:

- 1. Understand and apply the principles of spatial multibody dynamics using Euler Parameters.
- 2. Implement and integrate Lie group RK4 methods for dynamic simulations.
- 3. Model hydraulic actuators using lumped fluid theory.
- 4. Develop and code dynamic systems using the Julia Language.
- 5. Leverage machine learning techniques to enhance control and prediction in multibody dynamics.
- 6. Participate in a practical Hackathon to apply learned concepts in real-world scenarios.

3. Course content (separate for each type of classes)
Lecture
Introduction to Multibody Dynamics
Fundamental principles and equations governing multibody dynamics.
Overview of Euler Parameters and their advantages for spatial dynamics.
Euler Parameters in Dynamic Simulations
Detailed formulation and use in multibody simulations.
Numerical challenges and best practices.
Basics of Lie groups in mechanics
Implementation of Lie group RK4 methods for multibody simulations.
Hydraulic Actuator Modeling
Introduction to hydraulic systems in multibody dynamics.
Lumped fluid theory for actuator modeling and its integration with dynamic systems.
Machine Learning in Multibody Dynamics
Machine learning fundamentals relevant to dynamics.
Applications in control systems, prediction, and optimization of multibody systems.
Juna Language for Dynamics Overview of the Julia Language and its benefits in computational mechanics
Development of efficient and reusable code for multibody dynamic simulations
Hackathon Preparation
Introduction to real-world challenges to be addressed in the Hackathon.
Guidance on combining theoretical knowledge with practical skills.
Project classes
1st Session: Workshop on Multibody System Modeling
Excavator Simulation – Friction, Particles, and Hydraulics
Students will build a simple excavator model and explore:
• Using multibody software to solve practical problems.
• Friction effects in joints and ground contact.
Basic particle modeling for soil interaction.
Hydraulic actuators for controlling movement.
This session focuses on hands-on practice in multibody modeling, with applications in machine simulations
And Consistent Hashathan an Al fan Multik als Gustana
2nd Session: Hackatnon on A1 for Multibody Systems Machine Learning for Simulation and Control
Machine Learning for Simulation and Control
Students will use AI methods to improve multibody simulations by:
• Building a fast model to predict system behavior (surrogate modeling).
• Using reinforcement learning to control a robotic arm or pendulum.
Comparing AI results with traditional methods.
This session helps students understand how machine learning can make simulations faster and smarter
This session helps students understand now machine learning can make simulations faster and smarter.
Laboratory
Implementation of Multibody Code with Euler Parameters
Hands-on implementation of Euler Parameters in simulation software using Julia.
Analyzing the stability and accuracy of Euler Parameter-based methods.
Lie Group RK4 Simulations
Practical coding of Lie group RK4 methods.
Testing and valuation of algorithms with provided dynamic models. Hydraulic Actuator Design and Simulation
Development of hydraulic actuator models based on lumped fluid theory.
Simulation of hydraulic systems in multibody environments.
Machine Learning Applications
Building and training machine learning models for control and prediction.
Integration of ML-based solutions with multibody simulations.
Dynamic Systems in Julia
Coding dynamic systems from scratch in Julia.
Opumizing performance and debugging for complex systems.
A practical team-based challenge where students apply their skills to solve a real-world multibody dynamics
problem.
Presentation and evaluation of solutions based on innovation, accuracy, and implementation quality.
· · · · · · · · · · · · · · · · · · ·

Type of		Reference to the	Learning outcomes			
learning	Learning outcomes description	learning outcomes of	verification			
outcomes		the WUT DS	methods*			
	Knowledge					
V01	Understanding the principles of spatial	SD_W2	homework			
K01	multibody dynamics using Euler Parameters	SD_W3	test			
KOO	Gained knowledge regarding the Lie group RK4	SD_W2	homework			
K 02	integration methods for dynamic simulations	SD_W3	test			
Skills						
S01	Capability to model hydraulic actuators using lumped fluid theory	SD_U1	homework			
S02	Ability to develop and code dynamic systems using the Julia Language	SD_U1	homework			
	Capacity to leverage machine learning	SD U1	homework			
S03	techniques to enhance control and prediction in multibody dynamics	SD_U2	project evaluation			
Social competences						
SC01	Team work competences — participation in a practical Hackathon to apply learned concepts in real-world scenarios	SD_K2 SD_K4	presentation evaluation			

*Allowed learning outcomes verification methods: exam; oral exam; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

4. Assessment criteria

Individual homework assignments (3), team assignment (1) in a form of hackathon.

5. Literature

Primary references:

- [1] Lecture Notes
- [2] "Multibody System Dynamics" by Ahmed A. Shabana
- [3] "Deep Learning with Python" by François Chollet

Secondary references:

- [1] Stable Baselines3 documentation
- [2] The Julia Programming Language documentation

6. PhD student's workload necessary to achieve the learning outcomes**				
No.	Description	Number of hours		
1	Hours of scheduled instruction given by the academic teacher in the classroom	60		
2	Hours of consultations with the academic teacher, exams, tests, etc.	20		
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	25		
4	Amount of time devoted to the preparation for exams, test, assessments	20		
	125			

ECTS credits 5

** 1 ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)

7. Additional information				
Number of ECTS credits for classes requiring direct participation of academic teachers	3			
Number of ECTS credits earned by a student in a practical course	3			